A reaction-diffusion model for interference in meiotic crossing over.
نویسندگان
چکیده
One crossover point between a pair of homologous chromosomes in meiosis appears to interfere with occurrence of another in the neighborhood. It has been revealed that Drosophila and Neurospora, in spite of their large difference in the frequency of crossover points, show very similar plots of coincidence-a measure of the interference-against the genetic distance of the interval, defined as one-half the average number of crossover points within the interval. We here propose a simple reaction-diffusion model, where a "randomly walking" precursor becomes immobilized and matures into a crossover point. The interference is caused by pair-annihilation of the random walkers due to their collision and by annihilation of a random walker due to its collision with an immobilized point. This model has two parameters-the initial density of the random walkers and the rate of its processing into a crossover point. We show numerically that, as the former increases and/or the latter decreases, plotted curves of the coincidence vs. the genetic distance converge on a unique curve. Thus, our model explains the similarity between Drosophila and Neurospora without parameter values adjusted finely, although it is not a "genetic model" but is a "physical model," specifying explicitly what happens physically.
منابع مشابه
Chromosome size-dependent control of meiotic reciprocal recombination in Saccharomyces cerevisiae: the role of crossover interference.
In the yeast Saccharomyces cerevisiae, small chromosomes undergo meiotic reciprocal recombination (crossing over) at rates (centimorgans per kilobases) greater than those of large chromosomes, and recombination rates respond directly to changes in the total size of a chromosomal DNA molecule. This phenomenon, termed chromosome size-dependent control of meiotic reciprocal recombination, has been...
متن کاملCompeting crossover pathways act during meiosis in Saccharomyces cerevisiae.
In Saccharomyces cerevisiae the MSH4-MSH5, MLH1-MLH3, and MUS81-MMS4 complexes act to promote crossing over during meiosis. MSH4-MSH5, but not MUS81-MMS4, promotes crossovers that display interference. A role for MLH1-MLH3 in crossover control is less clear partly because mlh1Delta mutants retain crossover interference yet display a decrease in crossing over that is only slightly less severe th...
متن کاملMeiotic chromosome morphology and behavior in zip1 mutants of Saccharomyces cerevisiae.
The yeast Zip1 protein (Zip1p) is a component of the central region of the synaptonemal complex (SC). Zip1p is predicted to form a dimer consisting of a coiled-coil domain flanked by globular domains. To analyze the organization of Zip1p within the SC, in-frame deletions of ZIP1 were constructed and analyzed. The results demonstrate that the C terminus but not the N terminus of Zip1p is require...
متن کاملThe budding yeast Msh4 protein functions in chromosome synapsis and the regulation of crossover distribution.
The budding yeast MSH4 gene encodes a MutS homolog produced specifically in meiotic cells. Msh4 is not required for meiotic mismatch repair or gene conversion, but it is required for wild-type levels of crossing over. Here, we show that a msh4 null mutation substantially decreases crossover interference. With respect to the defect in interference and the level of crossing over, msh4 is similar ...
متن کاملگزارش یک مورد کراسینگ اور در آنتی ژنهای سیستم HLA
ABSTRACT : In the course of HLA typing for the members of 102 families who had referred for bone marrow and kidney transplantation to the tissue typing laboratory in Aliasghar Hospital, Isfahan ,between the years 1371 -1375 (1992-96),we found a case of crossing over in HLA System in a family. The fourth child of this family showed a crossing over brtween HLA -A and HAL -B Locous . The HLA phe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 161 1 شماره
صفحات -
تاریخ انتشار 2002